Enhancing Military Training Using Extended Reality: A Study of Military Tactics Comprehension
No Thumbnail Available
Authors
Boyce, Michael
Thomson, Robert
Cartwright, Joel K.
Feltner, David T.
Stainrod, Cortnee R.
Flynn, Jeremy
Ackermann, Christian
Emezie, John
Amburn, Charles R.
Rovira, Ericka
Issue Date
2022-07-08
Type
journal-article
Language
en_US
Keywords
Alternative Title
Abstract
This study identifies that increasing the fidelity of terrain representation does not necessarily increase overall understanding of the terrain in a simulated mission planning environment using the Battlefield Visualization and Interaction software (BVI; formerly known as ARES (M. W. Boyce et al., International Conference on Augmented Cognition, 2017, 411–422). Prior research by M. Boyce et al. (Military Psychology, 2019, 31(1), 45–59) compared human performance on a flat surface (tablet) versus topographically-shaped surface (BVI on a sand table integrated with top-down projection). Their results demonstrated that the topographically-shaped surface increased the perceived usability of the interface and reduced cognitive load relative to the flat interface, but did not affect overall task performance (i.e., accuracy and response time). The present study extends this work by adding BVI onto a Microsoft HoloLens™. A sample of 72 United States Military Academy cadets used BVI on three different technologies: a tablet, a sand table (a projection-based display onto a military sand table), and on the HoloLens™ in a within-subjects design. Participants answered questions regarding military tactics in the context of conducting an attack in complex terrain. While prior research (Dixon et al., Display Technologies and Applications for Defense, Security, and Avionics III, 2009, 7327) suggested that the full 3D visualization used by the Hololens™ should improve performance relative to the sand table and tablet, our results demonstrated that the HoloLens™ performed relatively worse than the other modalities in accuracy, response time, cognitive load, and usability. Implications and limitations of this work will be discussed.
Description
Citation
Boyce MW, Thomson RH, Cartwright JK, Feltner DT, Stainrod CR, Flynn J, Ackermann C, Emezie J, Amburn CR and Rovira E (2022) Enhancing Military Training Using Extended Reality: A Study of Military Tactics Comprehension. Front. Virtual Real. 3:754627. doi: 10.3389/frvir.2022.754627
Publisher
Frontiers in Virtual Reality
License
Journal
Volume
Issue
PubMed ID
ISSN
2673-4192
