The Distance Centrality: Measuring Structural Disruption In A Network
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This research provides an innovative approach to identifying the influence of vertices on the topology of a graph by introducing and exploring the neighbor matrix and distance centrality. The neighbor matrix depicts the “distance profile” of each vertex, identifying the number of vertices at each shortest path length from the given vertex. From the neighbor matrix, we can derive 11 oft-used graph invariants. Distance centrality uses the neighbor matrix to identify how much influence a given vertex has over graph structure by calculating the amount of neighbor matrix change resulting from vertex removal. We explore the distance centrality in the context of three synthetic graphs and three graphs representing actual social networks. Regression analysis enables the determination that the distance centrality contains different information than four current centrality measures (betweenness, closeness, degree, and eigenvector). The distance centrality proved to be more robust against small changes in graphs through analysis of graphs under edge swapping, deletion, and addition paradigms than betweenness and eigenvector centrality, though less so than degree and closeness centralities. We find that the neighbor matrix and the distance centrality reliably enable the identification of vertices that are significant in different and important contexts than current measures.