Measuring Classification Decision Certainty and Doubt

dc.contributor.authorBereneim, Alex
dc.contributor.authorCruikshank, Iain
dc.contributor.authorJha, Susmit
dc.contributor.authorThomson, Robert
dc.contributor.authorBastian, Nathaniel
dc.date.accessioned2024-10-02T19:22:25Z
dc.date.available2024-10-02T19:22:25Z
dc.date.issued2023-03-25
dc.description.abstractQuantitative characterizations and estimations of uncertainty are of fundamental importance in optimization and decision-making processes. Herein, we propose intuitive scores, which we call certainty and doubt, that can be used in both a Bayesian and frequentist framework to assess and compare the quality and uncertainty of predictions in (multi-)classification decision machine learning problems.
dc.description.sponsorshipBS&L SRI DARPA EECS Army Cyber Institute
dc.identifier.citationBerenbeim, Alexander M., Iain J. Cruickshank, Susmit Jha, Robert H. Thomson, and Nathaniel D. Bastian. "Measuring classification decision certainty and doubt." arXiv preprint arXiv:2303.14568 (2023).
dc.identifier.other2303.14568v2
dc.identifier.urihttps://arxiv.org/abs/2303.14568
dc.identifier.urihttps://hdl.handle.net/20.500.14216/1563
dc.publisherArxiv
dc.subjectstat.ML
dc.subjectcs.AI
dc.subjectcs.LG
dc.subjectmath.DG
dc.subjectmath.PR
dc.titleMeasuring Classification Decision Certainty and Doubt
dc.typeScholarly papers
local.peerReviewedNo

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2303.14568v2.pdf
Size:
104.56 KB
Format:
Adobe Portable Document Format