Anchor Bolt Patterns for Mechanically Fastened FRP Plates
Date
2019
Journal Title
Journal ISSN
Volume Title
Publisher
ASCE
Abstract
This paper examines the results of material testing of hybrid carbon and glass fiber-reinforced polymer (FRP) plates for use in prestressed mechanically fastened applications. The small-scale material tests were conducted in three phases: (1) uniaxial tension without holes, (2) uniaxial tension with open holes, and (3) uniaxial tension with single- and multibolt connections. In all three phases of testing, Digital Image Correlation (DIC) was used to obtain continuous strain data, showing holistic strain field development through failure. A total of 89 tests were conducted across 17 treatment groups to develop an anchor pattern and fastener spacing which is optimized with respect to maximum capacity and behavior under anticipated service load conditions. The tests presented comprise the initial phase of a larger project that aims to employ prestressed mechanically fastened FRP (MF-FRP) plates as a retrofit repair solution for deteriorated prestressed concrete bridge superstructures. Results conclude that 2 lines of 11 bolts with diameters of 12.7 mm, with longitudinal spacing of 100 mm and transverse spacing of 38 mm, provide an end-region anchor pattern with an ultimate capacity of 206 kN which is 89% of the ultimate capacity for the examined FRP plate with holes.
Description
item.page.type
journal-article
item.page.format
Keywords
Fiber-reinforced polymer (FRP), Digital Image Correlation (DIC)
Citation
McCoy et al., “Anchor Bolt Patterns for Mechanically Fastened FRP Plates.” 2019.