A Collaborative Visual Localization Scheme for a Low-Cost Heterogeneous Robotic Team With Non-Overlapping Perspectives
Date
2019-08-18
Journal Title
Journal ISSN
Volume Title
Publisher
American Society of Mechanical Engineers
Abstract
This paper presents and evaluates a relative localization scheme for a heterogeneous team of low-cost mobile robots. An error-state, complementary Kalman Filter was developed to fuse analytically-derived uncertainty of stereoscopic pose measurements of an aerial robot, made by a ground robot, with the inertial/visual proprioceptive measurements of both robots. Results show that the sources of error, image quantization, asynchronous sensors, and a non-stationary bias, were sufficiently modeled to estimate the pose of the aerial robot. In both simulation and experiments, we demonstrate the proposed methodology with a heterogeneous robot team, consisting of a UAV and a UGV tasked with collaboratively localizing themselves while avoiding obstacles in an unknown environment. The team is able to identify a goal location and obstacles in the environment and plan a path for the UGV to the goal location. The results demonstrate localization accuracies of 2cm to 4cm, on average, while the robots operate at a distance from each-other between 1m and 4m.
Description
item.page.type
proceedings-article
item.page.format
Keywords
Robotics, Teams, Robots, Errors, Kalman filters, Mobile robots, Sensors, Simulation, Uncertainty, Unmanned aerial vehicles
Citation
Abruzzo, B, Cappelleri, D, & Mordohai, P. "A Collaborative Visual Localization Scheme for a Low-Cost Heterogeneous Robotic Team With Non-Overlapping Perspectives." Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5A: 43rd Mechanisms and Robotics Conference. Anaheim, California, USA. August 18–21, 2019. V05AT07A044. ASME. https://doi.org/10.1115/DETC2019-97377