Designing and Analyzing an Underbody Plate for an Armored Vehicle Subjected to Blast
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
ASME
Abstract
The purpose of this project was to design the next generation of additive underbody blast protection plates for military combat vehicles. Buried improvised explosive devices (IEDs) pose a serious threat to armored vehicles causing significant deflection to the underbody. Such deflections can result in potential lifelong and life-threatening injuries. The proposed plate is designed to be modular and easily replaceable. The structural design aimed to minimize areal density and depth of the panel, thereby reducing the weight and increasing the ground clearance of the vehicle. Prototypes of the panel designs were additively manufactured from sintered Ti6Al4V, a high strength titanium alloy. The designs were experimentally tested at the Army Research Laboratory in Aberdeen, Maryland under a small-scale buried blast event. Numerical finite element models were created in LS-DYNA to analyze each potential design. The designs used a sacrificial sandwich structure between two monolithic plates. The sandwiched structure was designed to provide optimal stiffness and energy absorption. The final panel design decreased the areal density and thickness of the panel by 14% and 9%, respectively. The experimental results were validated by an LS-Dyna numerical model, which projected a maximum deflection of 7.4 mm within 20.7% of the experimental deflection.
Description
item.page.type
proceedings-article
item.page.format
Keywords
Finite element model, Structural dynamics, Additive manufacturing, Computer aided design
Citation
Carrillo, J, Justice, J, Kim, T, Loomis, C, & McMullen, K. "Designing and Analyzing an Underbody Plate for an Armored Vehicle Subjected to Blast." Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition. Volume 12: Mechanics of Solids, Structures, and Fluids; Micro- and Nano- Systems Engineering and Packaging. Virtual, Online. November 1–5, 2021. V012T12A020. ASME. https://doi.org/10.1115/IMECE2021-71832