Algorithmic methods for covering arrays of higher index

No Thumbnail Available

Authors

Dougherty, Ryan E.
Kleine, Kristoffer
Wagner, Michael
Colbourn, Charles J.
Simos, Dimitris E.

Issue Date

2022-12-08

Type

journal-article

Language

Keywords

Covering array , Software testing , In-parameter-order algorithm , Conditional expectation

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Covering arrays are combinatorial objects used in testing large-scale systems to increase confidence in their correctness. To do so, each interaction of at most a specified number t of factors is represented in at least one test; that is, the covering array has strength t and index 1. For certain systems, the outcome of running a test may be altered by variability of the interaction effect or by measurement error of the test result. To improve the efficacy of testing, one can ensure that each interaction of t or fewer factors is represented in at least λ tests. When λ>1, this leads to covering arrays of higher index. We explore two algorithmic methods for constructing covering arrays of higher index. One is based on the in-parameter-order algorithm, and the other employs a conditional expectation paradigm. We compare these two by performing experiments on real-world benchmarks and on uniform parameter sets.

Description

Citation

Ryan E. Dougherty, Kristoffer Kleine, Michael Wagner, Charles J. Colbourn, and Dimitris E. Simos. 2023. Algorithmic methods for covering arrays of higher index. J. Comb. Optim. 45, 1 (Jan 2023). https://doi.org/10.1007/s10878-022-00947-x

Publisher

Springer Science and Business Media LLC

License

Journal

Volume

Issue

PubMed ID

ISSN

1382-6905
1573-2886

EISSN