Adaptive Aerial Localization Using Lissajous Search Patterns

No Thumbnail Available

Authors

Steckenrider, J. Josiah

Issue Date

2022

Type

journal-article

Language

Keywords

Estimation , Location awareness , Probability density function , Adaptation models , Mathematical model , Search problems , Uncertainty

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

This work presents an adaptive approach to cooperative aerial search and localization (SAL) which implements Lissajous search patterns and non-Gaussian observation likelihoods to preserve high target information. The adaptive component of the framework utilizes a simultaneous estimation and modeling technique to both estimate agent states and correct their motion models. In order to maximize the information available about a target even when it is not observed by a search agent, multi-Gaussian observation likelihoods are continuously generated for each agent and then fused across the search team. Monte Carlo simulation studies show that the proposed adaptive localization framework outperforms standard filtering techniques by significant margins, for a wide range of parameter values. The differential entropies of fused target likelihoods are studied for various multiagent Lissajous pattern configurations, leading to the derivation of optimal Lissajous parameters for cooperative SAL. This work has relevance for SAL applications in rescue, safety, and defense sectors, offering a robust solution to target localization when a priori target motion information is unavailable.

Description

Citation

J. J. Steckenrider, "Adaptive Aerial Localization Using Lissajous Search Patterns," in IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2094-2113, Aug. 2022, doi: 10.1109/TRO.2021.3126225.

Publisher

IEEE

License

Journal

Volume

Issue

PubMed ID

ISSN

1552-3098
1941-0468

EISSN