Data Gap Classification for Terrestrial Laser Scanning-Derived Digital Elevation Models

Journal Title
Journal ISSN
Volume Title
ISPRS International Journal of Geo-Information
Extensive gaps in terrestrial laser scanning (TLS) point cloud data can primarily be classified into two categories: occlusions and dropouts. These gaps adversely affect derived products such as 3D surface models and digital elevation models (DEMs), requiring interpolation to produce a spatially continuous surface for many types of analyses. Ultimately, the relative proportion of occlusions in a TLS survey is an indicator of the survey quality. Recognizing that regions of a scanned scene occluded from one scan position are likely visible from another point of view, a prevalence of occlusions can indicate an insufficient number of scans and/or poor scanner placement. Conversely, a prevalence of dropouts is ordinarily not indicative of survey quality, as a scanner operator cannot usually control the presence of specular reflective or absorbent surfaces in a scanned scene. To this end, this manuscript presents a novel methodology to determine data completeness by properly classifying and quantifying the proportion of the site that consists of point returns and the two types of data gaps. Knowledge of the data gap origin can not only facilitate the judgement of TLS survey quality, but it can also identify pooled water when water reflections are the main source of dropouts in a scene, which is important for ecological research, such as habitat modeling. The proposed data gap classification methodology was successfully applied to DEMs for two study sites: (1) A controlled test site established by the authors for the proof of concept of classification of occlusions and dropouts and (2) a rocky intertidal environment (Rabbit Rock) presenting immense challenges to develop a topographic model due to significant tidal fluctuations, pooled water bodies, and rugged terrain generating many occlusions.
Data gaps, Occlusions, Dropouts, Terrestrial laser scanning, TLS, Lidar, Digital elevation models
O’Banion, Matthew S., Michael J. Olsen, Jeff P. Hollenbeck, and William C. Wright. 2020. "Data Gap Classification for Terrestrial Laser Scanning-Derived Digital Elevation Models" ISPRS International Journal of Geo-Information 9, no. 12: 749.