Insertion tasks using an aerial manipulator
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This paper demonstrates insertion tasks using an aerial vehicle affixed with a multi-degree of freedom manipulator. Using a combined strategy of visual servoing and force feedback compliance, the aerial manipulator achieves peg-in-hole insertion while attached to a validation test rig. A strongly coupled control scheme between the aircraft and manipulator is mandated for tasks requiring millimeter accuracy. Visual servoing is well-established for both ground and aerial vehicles and facilitates the large aircraft-arm motions. Force feedback upon contact with the environment provides compliant insertion and smaller motions in the presence of position error. We present recent results demonstrating and validating peg-in-hole insertion using the proposed aircraft-arm model and system.