Constitutive Modeling and Initial Validation of Cellular Concrete Subjected to Large Strains and High Strain Rates

No Thumbnail Available

Authors

Davis, Brad G.
Dequenne, Jared A.

Issue Date

2020

Type

proceedings-article

Language

Keywords

Cellular concrete , Holmquist-Johnson-Cook model , Finite element , Constitutive model

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

The development of lead-free small caliber weapon systems has inadvertently resulted in rounds with more material penetration capabilities. The increased penetration may mean that existing live-fire facilities will no longer be adequate for the training and certification of military and law enforcement personnel. Constraints on training in many live-fire shoot house facilities are already in place, with some allowing only single round impact during training. With no existing constitutive model for the cellular concrete commonly used in these facilities, it is not currently possible to analyze existing facilities or design new facilities against the most recent generation of ammunition currently being fielded. This project utilizes unconfined compression, uniaxial tension, triaxial confinement, and uniaxial strain from the US Army Corps of Engineers Engineer Research and Development Center and Sandia National Laboratory to characterize cellular concrete using a Holmquist-Johnson-Cook Concrete model for use in numerical simulations. This model is then initially validated using data from existing single projectile impact experiments against a similar material, showing results with reasonable accuracy. Additional experiments to fully validate the proposed model are discussed. This model provides the facility owner a potential tool to validate the safety of their facility against new projectiles and provides the designer of new facilities a tool for optimizing future configurations using these materials.

Description

Citation

Davis, BG, & Dequenne, JA. "Constitutive Modeling and Initial Validation of Cellular Concrete Subjected to Large Strains and High Strain Rates." Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition. Volume 12: Mechanics of Solids, Structures, and Fluids. Virtual, Online. November 16–19, 2020. V012T12A041. ASME. https://doi.org/10.1115/IMECE2020-23893

Publisher

ASME

License

Journal

Volume

Issue

PubMed ID

ISSN

EISSN